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Figure 1: Our method extends the semi-Lagrangian method and corrects the velocity �eld of the current time step via the
integration of the pressure gradient over time. From left to right, semi-Lagrangian advection, our method (for N = 4, N = 8,
N = 16) where N denotes the number of preceding time steps used by our method.

ABSTRACT
We introduce a new advection scheme for �uid animation. Our
main contribution is the use of long-term temporal changes in
pressure to extend the commonly used semi-Lagrangian scheme
further back along the time axis. Our algorithm starts by tracing
sample points along a trajectory following the velocity �eld back-
wards in time for many steps. During this backtracing process, the
pressure gradient along the path is integrated to correct the veloc-
ity of the current time step. We show that our method e�ectively
suppresses numerical di�usion, retains small-scale vorticity, and
provides better long-term kinetic energy preservation.
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1 INTRODUCTION
An accurate velocity advection scheme is an essential component
for any visually pleasing �uid simulation. Today, the MacCormack
scheme [Selle et al. 2008] has become the state-of-the-art Eulerian
scheme in practice due to its ease of implementation and cost-
e�ective accuracy over �rst-order semi-Lagrangian schemes [Stam
1999]. Nevertheless, challenges remain. Arti�cial (numerical) di�u-
sion still takes place at every step, leading to a signi�cant dissipation
of vorticity and energy over time. Naïvely increasing the resolution
does not help, since in general the time step size must also be ad-
justed according to some CFL number, and the increased resolution
leads to signi�cantly larger computational costs. High-order inter-
polation schemes (e.g., ENO or WENO) can improve accuracy, but
involve larger stencils, and the issues listed above persist. Xiu and
Karniadakis [2001] provide a more comprehensive discussion of
accuracy versus grid resolution in semi-Lagrangian schemes. The
Characteristic Map scheme [Tessendorf and Pelfrey 2011], based on
the method of characteristics, was developed to reduce the accumu-
lation of dissipation, but thus far it has been limited to essentially
passive scalar �elds (e.g., smoke density). This paper presents a
new alternative: we leverage the time-varying pressure �eld data
retained from previous frames to signi�cantly reduce the detrimen-
tal e�ects of numerical dissipation. In summary, this paper o�ers
the following contributions:

• We derive new equations for advection that e�ectively min-
imize numerical dissipation by incorporating the pressure
gradient over time.

• Our algorithm o�ers intuitive control of accuracy, allowing
a user to trade o� quality against increased computational
and memory costs.
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• Our method is easy to implement and parallelize, and it
outperforms theMacCormack scheme at preserving kinetic
energy and vorticity.

2 RELATEDWORK
For a review of grid-based �uid simulation we refer to Bridson’s
textbook [Bridson 2015]. Since our contribution is a new Eulerian
advection scheme, we focus our discussion around such methods.

Semi-Lagrangian Method. Semi-Lagrangian advection was intro-
duced to graphics by Stam [1999], with the key advantage of being
unconditionally stable regardless of time step [Bridson 2015]. It
works by moving a virtual particle one step back in time through
the velocity �eld and (tri-/bi-)linearly interpolating a value at the re-
sulting position. Indeed, for CFL numbers less than one the method
is equivalent to a �rst-order upwind advection scheme. As we show
later, this interpolation is the primary source of numerical di�usion.

Selle et al. an unconditionally stable semi-Lagrangian MacCor-
mack method [Selle et al. 2008] that reduces error through extra
back and forth steps, and thereby achieving second-order accuracy.
While this partially mitigates numerical di�usion, some di�usion
arising from the grid interpolation nevertheless remains.

High-order Interpolation. Multilinear interpolation can be re-
placed with high-order schemes. Essentially non-oscillatory (ENO)
[Chi-Shu 1997], weighted ENO (WENO) [Chi-Shu 1997] and the
cubic-interpolation pseudo-particle (CIP) scheme [Takewaki and
Yabe 1987] are popular approaches, and these methods have suc-
cessfully been applied in graphics [Foster and Fedkiw 2001; Heo and
Ko 2010]. The improvements they o�er are due to their increased
order of accuracy, whereas our method reduces error introduced
by repeated interpolations, separate from the particular interpola-
tion method used. Our results demonstrate that our method with
linear interpolation provides qualitatively superior results to the
MacCormack method with sixth-order WENO interpolation.

Method of Characteristics. Our method is similar in spirit to the
work of Tessendorf and Pelfrey [2011] and that of Hachisuka [2005],
in the sense that they used themethod of characteristics, albeit to ad-
vect a density �eld rather than the velocity �eld. These approaches
follow a streamline of a virtual particle through the velocity �eld in
a Lagrangian manner, much like the (single-step) semi-Lagrangian
method. However, the current density at a position is formulated
as the density at the original position of a particle at the beginning
of a simulation, plus the total density source which the particle has
received along the streamline. By tracing back to the starting time,
repeated interpolation (and dissipation) are avoided.

We similarly consider material transport along the streamlines
of velocity; however, by further considering the role of the pressure
�eld over time, we are able to extend this framework to correctly
handle velocity advection, rather than scalar advection.

3 OUR ADVECTION SCHEME
First, we illustrate how to incorporate temporal information into
our advection scheme. We begin with the momentum equation of
the incompressible Euler equations,

Du (x , t )

Dt
= � 1

�
rp (x , t ), (1)

where D/Dt denotes the material derivative, and p (x , t ) and u (x , t )
denote pressure and velocity, respectively, at a position x and a
time t . Let S be the trajectory of a particle passively advected by
the time-varying velocity �eld from the beginning of a simulation
to a time t = T , parameterized by time. Integrating both sides of
Eq. (1) over time gives

u (x (S (T )),T ) = u (x (S (0)), 0) �
Z T

0

1
�
rp (x (S (t )), t )dt , (2)

where x (S (t )) denotes a position on a trajectory S at a time t . For
brevity, in the followingwe use short notations:uS,T ⌘ u (x (S (T )),T )
and pS,T ⌘ p (x (S (T )),T ). We will aim to solve Eq. (2) and show
that this e�ectively lessens the numerical dissipation. We outline
one step of our simulation in Algorithm 1.

Algorithm 1: Our Simulation Loop

1 u

?
S,T = uS,0 �

R T
0

1
� rpS,tdt

2 u

⇤
S,T = u

?
S,T (x � �tuS,T )

3 uS,T+�t = project(u⇤S,T )
4 Save p and uS,T+�t

In the basic semi-Lagrangian method, signi�cant numerical dif-
fusion arises because the velocity is resampled at every time step.
We circumvent this issue by reconstructing u?S,T from the velocity
�eld at the beginning of a simulation (Line 1 of Algorithm 1). This
way, our approach does not accumulate numerical di�usion over
time. Notice that unlikeuS,T , the reconstructed velocityu?S,T is not
exactly divergence-free in the limit of numerical approximation.
Therefore, we choose uS,T for backtracing positions to preserve
mass conservation in the same spirit as the Fluid-Implicit Particle
(FLIP) [Zhu and Bridson 2005] and use u?S,T for sampling the inter-
mediate velocity after advection (Line 2 of Algorithm 1) because
u

?
S,T need not necessarily be divergence-free. Finally, u⇤S,T is pro-

jected to be incompressible though the regular pressure projection
routine [Bridson 2015] to get the new velocity for the next time
step (Line 3 of Algorithm 1).

3.1 Integrating The Pressure Gradient
We compute the integral of the pressure gradient in Eq. (2) by repeat-
ing the semi-Lagrangian backtrace until we reach the beginning of
a simulation. Hence, we must record both the velocity and pressure
�elds for all previous time steps. We will later show that this limi-
tation can be partially alleviated, in exchange for some reduction
in accuracy. In our examples, we employ second-order accurate
Runge-Kutta for backtracing, and choose single point quadrature
for the line integration. For example:

Z T

T��t

1
�
rpS,tdt ⇡ �trpS,T� 1

2�t
. (3)

Like before, we use the divergence-free velocity �eld uS,T for back-
tracing positions. At the end of the backtrace we can locate S0, and
substitute into Eq.(2) to complete the calculation of u?S,T .

3.2 Seeding Integration Tracers
In the above exposition, we assumed we were backtracing only a
single point, but the velocity �eld values sampled on the regular grid
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Figure 2: A crawling vorticity experiment using our method (N = 32). Vorticity is initiated on the left wall and is allowed to
crawl along the spiral walls, ultimately reaching the center of the maze (far right).

are properly interpreted as the average of the velocity over a small
cell. Therefore, we should backtrace not a single point but rather a
small volume around the sample point. Since true backtracing of
a volumetric region would lead to severe geometric tangling, we
instead propose to simply seed multiple points (integration tracers)
per cell, inspired by a Gaussian quadrature rule.

We seed tracer particles in a uniform grid pattern over each cell,
using four tracers per cell in 2D and eight in 3D. Those tracers are
separately backtraced and the averaged value is used to compute
u

?
S,T per cell. This setup is straightforward to extend to staggered

con�gurations, as we do in our examples.

3.3 Reusing The Reconstructed Velocity
As the simulation proceeds, the total number of previous velocity
and pressure �elds stored continually increases. This eventually
leads to a tremendous memory footprint and for practical purposes
it becomes infeasible to fetch a velocity from the beginning of the
simulation. To overcome this issue, we propose an amendment to
allow our method to run at a �xed computational cost regardless
of running time. Let N be a target bound on the number of time
steps’ data to be stored. Eq.(2) can then be re-written as

uS,T =

 
uS,0 �

Z T�N�t

0

1
�
rpS,tdt

!
�

Z T

T�N�t

1
�
rpS,tdt . (4)

Notice that Eq.(4) is equivalent to

uS,T = u
?
S,T�N�t �

Z T

T�N�t

1
�
rpS,tdt . (5)

This way, we can resort to the previously reconstructed u?S,T�N�t
instead of tracing all the way back to uS,0. To this end, we addi-
tionally store u?S,T at every time step. When computing Eq.(2), we
backtrace at most N steps and fetch u

?
S,T�N�t instead of uS,0 at

Algorithm 2: Our Simulation Loop (Updated)

1 u

?
S,T = u

?
S,T�N�t �

R T
T�N�t

1
� rpS,tdt

2 u

⇤
S,T = u

?
S,T (x � �tuS,T )

3 uS,T+�t = project(u⇤S,T )
4 Save p ,uS,T+�t and u?S,T .

the point. Although this reintroduces some numerical di�usion,
the amount is O ( 1

N ) compared to the standard semi-Lagrangian
method. For completeness, we assume that u?S,0 = uS,0 and N�t 
T . Algorithm 2 lays out one step of our modi�ed algorithm.

3.4 Temporal Filtering
When applied as described, our method can display temporal �icker-
ing artifacts; this is because we always fetch the velocity from only
the frame N steps back, which allows partial decoupling between
sets of frames separated by N steps (e.g., for N = 4, frame 5 inter-
polates its starting velocity from frame 1, whereas frame 6 starts
from frame 2, allowing the two sequences to gradually deviate over
time). We introduce a temporal �ltering technique to mitigate this
issue. Instead of sampling velocity from a single frame, we fetch
the velocity from multiple sources and blend them together. Our
blending recipe is as follows:

u

•
S,T =

1
W

NX

i=1

⌧
wiu

?
S,T�Ni�t �wi

Z T

T�Ni�t

1
�
rpS,tdt

�
, (6)

whereW =
P
i wi and Ni = N � i . To accommodate the e�ect of

our temporal �ltering, we replace u?S,T with u•S,T in Algorithm 2.
In our examples, we pickwi = � i�1 where � < 1 is a user-speci�ed
parameter which we set to � = 0.9.

3.5 Static Solids, Liquids and External Forces
To straightforwardly extend ourmethod to support solid boundaries
and liquids, rather than explicitly storing pressure, we store the
change in velocity due to the pressure projection: uS,T+�t �u⇤S,T .
Although this increases the memory consumption, it provides the
bene�t that we can automatically account for the extrapolated
velocity without special care. External forces f , such as gravity,
buoyancy, or user interaction, can likewise be added to the change:
uS,T+�t �u⇤S,T + f .

4 RESULTS
Figure 1 demonstrates how the simulation quality improves as
we increase N . This simulation was run with a 1283 grid on a 10-
core Intel(R) Core(TM) i7-6950X CPU 3.00GHz running Linux. Our
modi�ed advection scheme took approximately 10 seconds per time
step, which corresponds to roughly 60% of the simulation time.
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Figure 3: Kinetic energy plot of the 2D Taylor-Green vortex
test.

Figure 2 shows a spiral maze experiment as also performed by
Mullen et al. [2009]. We set up the same experiment with semi-
Lagrangian advection, MacCormack advection with WENO inter-
polation, and our method with variable N . When N reaches 32,
we observed that our method successfully passed the test, in that
an initial vortex propagates all the way to the maze’s center. We
provide the results of other schemes in the supplemental video.

Finally, Figure 3 plots the observed kinetic energy on a 2D Taylor-
Green vortex test [Cummins and Rudman 1999]. As expected, our
method retains kinetic energy for a longer duration compared to
other schemes.

5 DISCUSSION
In practice, the choice of an e�ective N highly also depends on the
accuracy of the integration scheme used. We observed that in two
dimensions, our four-point sampling technique typically allowed us
to step backwards at most 32 time steps without apparent artifacts.
Stepping back more than this induced numerical instabilities, such
as velocity �uctuations. We also applied our method for liquids, but
found that the visual improvement was subtle. We suspect that this
is because interior vorticity does not play a dominant role in many
liquid scenes, as also suggested by Zhang et al. [2015].

We explored ourmethodwith two di�erent interpolation schemes:
bilinear interpolation and sixth-order WENO interpolation. Al-
though WENO interpolation showed a slightly superior accuracy,
we felt that the increased runtime did not pay the cost.

Note that although our method devises an advection operator
to better retain kinetic energy for a long duration, it does not o�er
exact preservation. If this is desired, one may prefer to use a strictly
energy-preserving integrator [Mullen et al. 2009].

5.1 Limitations
The primary drawback of our method is the added computational
cost and memory storage compared to basic semi-Lagrangian ad-
vection. These are approximately N times larger, because we must
repeat a semi-Lagrangian-style backtracing step N times. Fortu-
nately, our method is fully parallelizable and portable to modern
GPUs, which suggests a strong potential for acceleration. Also, the
pressure solve step can often dominate the simulation cost (e.g.,
90% for smoke [Lentine et al. 2010]) by O (N 2

� ) if a preconditioned
conjugate gradient method is used, for N� grid cells. Since the
semi-Lagrangian method consumes O (N� ) and our method runs

at O (NN� ), our method scales better than the pressure solve if
N < N� .

6 CONCLUSION AND FUTUREWORK
This paper introduced a reduced-dissipation velocity advection
scheme for �uid animation. The key attribute of our method was to
integrate the time-varying pressure gradient along the trajectory to
avoid dissipation from resampling the velocity at every time step.
Our approach is easy to implement and successfully suppresses
numerical di�usion, allowing us to better preserve small-scale tur-
bulence and kinetic energy over the alternative MacCormack ad-
vection scheme. In future work we would like to extend our method
to minimize the drift of plasticity for Eulerian solid simulation (e.g.,
Material Point Method), and thus preserve better elasticity.
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